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Cyclic Codes



Definition

A linear code C ⊂ Fn is called a cyclic code if for every vector
(a0, a1, . . . , an−2, an−1) in the code, we have that also the vector
(an−1, a0, a1, . . . , an−2) is in the code.

Notice that the definition implies that if (a0, a1, . . . , an−2, an−1) is in the

code, then all the vectors obtained from this one by a cyclic permutation

of its coordinates are also in the code.
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Let

Rn =
F[X ]

⟨X n − 1⟩
;

We shall denote by [f ] the class of the polynomial f ∈ F[X ] in Rn.

The mapping:

φ : Fn → F[X ]

⟨X n − 1⟩
(a0, a1, . . . , an−2, an−1) ∈ F[X ] 7→ [a0 + a1X + . . . + an−2X

n−2 + an−1X
n−1].

φ is an isomorphism of F-vector spaces. Hence A code C ⊂ Fn is
cyclic if and only if φ(C) is an ideal of Rn.
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In the case when Cn = ⟨a | an = 1⟩ = {1, a, a2, . . . , an−1} is a
cyclic group of order n, and F is a field, the elements of FCn are of
the form:

α = α0 + α1a+ α2a
2 + · · ·+ αn−1a

n−1.

It is easy to show that

FCn
∼= Rn =

F[X ]

⟨X n − 1⟩
;

Hence, to study cyclic codes is equivalent to study
ideals of a group algebra of the form FCn.
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Group Codes



Definition

A group code is an ideal of a finite group algebra.

S.D. Berman 1967.
F.J. MacWilliams 1970.

In what follows, we shall always assume that char(K ) |̸ |G | so all
group algebras considered here will be semisimple and thus, all
ideals of FG are of the form I = FGe, where e ∈ FG is an
idempotent element.
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Idempotents from subgroups

Let H be a subgroup of a finite group G and let F be a field such
that car(F) |̸ |G |. The element

Ĥ =
1

|H|
∑
h∈H

h

is an idempotent of the group algebra FG , called the idempotent
determined by H.

Ĥ is central if and only if H is normal in G .
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Ĥ is central if and only if H is normal in G .



If H is a normal subgroup of a group G , we have that

FG · Ĥ ∼= F[G/H]

via the map ψ : FG · Ĥ → F[G/H] given by

g .Ĥ 7→ gH ∈ G/H.

so

dimF

(
(FG ) · Ĥ

)
= |G |

|H| = [G : H].

Set τ = {t1, t2, . . . , tk} a transversal of K in G (where k = [G : H]
and we choose t1 = 1), then

{ti Ĥ | 1 ≤ i ≤ k}

is a a basis of (FG ) · Ĥ.
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{ti Ĥ | 1 ≤ i ≤ k}

is a a basis of (FG ) · Ĥ.
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Then, an element α ∈ FG · e can be written in the form

α =
∑
ν∈τ

αννĤ.

If we denote τ = {t1, t2, . . . , td} and H = {h1, h2, . . . , hm}, the
explicit expression of α is

α = α1t1h1+α2t2h1+· · ·+αd tdh1+· · ·+α1t1hm+α2t2hm+· · ·+αd tdhm.

The sequence of coefficients of α, when written in this order, is
formed by d repetitions of the subsequence α1, α2, · · ·αd , so this is
a repetition code.
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Essential idempotents



Let H be a normal subgroup of G . Then, Ĥ is a central
idempotent and, as such, a sum of primitive central idempotents
called its constituents.

Let e be a primitive central idempotent of FG . Then:

If e is not a constituent of Ĥ we have that eĤ = 0.

If e is a constituent of Ĥ we have that eĤ = e.

In this last case, we have that FG · e ⊂ FG · Ĥ.

Hence, the minimal code FG · e is a repetition code.
.
We shall be interested in primitive idempotents which are not of
this type.
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idempotent and, as such, a sum of primitive central idempotents
called its constituents.

Let e be a primitive central idempotent of FG . Then:

If e is not a constituent of Ĥ we have that eĤ = 0.
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Hence, the minimal code FG · e is a repetition code.
.
We shall be interested in primitive idempotents which are not of
this type.



Let H be a normal subgroup of G . Then, Ĥ is a central
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Definition

A primitive idempotent e in the group algebra FG , is an essential
idempotent if e · Ĥ = 0, for every subgroup H ̸= (1) in G .

A minimal ideal of FG will be called essential ideal if it is
generated by an essential idempotent.

Lemma

Let e ∈ FG be a primitive central idempotent. Then e is essential
if and only if the map π : G → Ge, is a group isomorphism.
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Corollary

If G is abelian and FG contains an essential idempotent, then G is
cyclic.

Corollary

If G is abelian, non-cyclic, then every minimal ideal gives a
repetition code.
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Assume that G is cyclic of order n = pn11 · · · pntt . Then, G can be
written as a direct product G = C1 × · · · × Ct , where Ci is cyclic,
of order pnii , 1 ≤ i ≤ t.

Let Ki be the minimal subgroup of Ci ; i.e. the unique subgroup of
order pi in Ci and denote by ai a generator of this subgroup,
1 ≤ i ≤ t. Set

e0 = (1− K̂1) · · · (1− K̂t)

Then e0 is a non-zero central idempotent.

Proposition

Let G be a cyclic group. Then, a primitive idempotent e ∈ FG is
essential if and only if e · e0 = e.

Notice that the previous theorem actually shows that e0 is the sum
of all essential idempotents so, the simple components of the ideal
FC .e0 are precisely the essential ideals of FC .
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Theorem

Every minimal ideal in the semisimple group algebra FA of a finite
abelian group A is permutation equivalent to a minimal ideal in the
group algebra FC of a cyclic group C of the same order.



Theorem

Let C be a binary linear code of constant weight, whose
generating matrix has no zero columns.

Then C is equivalent to a cyclic code which is either essencial or a
repetition code of an essencial code.
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Nilpotent Codes



Let G be a nilpotent group and let F be the family of all minimal
normal subgroups of G . For a field F such that char(F) |̸ |G |, we
define

e(G ) =
∏
K∈F

(1− K̂ ) ∈ FG .

Lemma

With the notation above, e(G ) is the sum of all the essential
idempotents of FG .
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Let G be a finite group and R a finite semisimple ring such that |G |
is invertible in R. Let e ∈ RG be a primitive central idempotent.

We define

Ke = {g ∈ G : ge = e}.

Notice that Ke is the kernel of the group homomorphism
π : G → Ge, given by g 7→ ge. Thus

G

Ke

∼= Ge.
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Let e ∈ RG be a primitive central idempotent and K a normal
subgroup of G .
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Equivalence



Definitions

Let F be a field and n a positive integer. Recall that an F-linear
transformation T : Fn → Fn is a monomial transformation if
there exists a permutation σ ∈ Sn and nonzero elements
k1, k2 . . . , kn in F such that

T (x1, x2, . . . , xn) = (k1xσ(1), k2xσ(2) . . . , knxσ(n)),

for all (x1, x2, . . . , xn) ∈ Fn.

Two linear codes C1 and C2 in Fn are monomially equivalent if
there exists a monomial transformation T : Fn → Fn such that
T (C1) = C2.

In the particular case when ki = 1, 1 ≤ i ≤ n, the codes are said
to be permutation equivalent.
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When a group G canbe written as a product G = AB, where A and
B are abelian subgroups of G then all ideals in a semisimple group
algebra FG are permutation equivalent to abelian codes ([1], [6]).

On the other hand, it was shown in [4], that there exists a
nilpotent code which is not monomially equivalent (and thus also
not permutation equivalent) to an abelian code.

In what follows, we give other conditions for group codes (not
necessarily nilpotent) to be permutation equivalent to e Abelian
codes.



When a group G canbe written as a product G = AB, where A and
B are abelian subgroups of G then all ideals in a semisimple group
algebra FG are permutation equivalent to abelian codes ([1], [6]).

On the other hand, it was shown in [4], that there exists a
nilpotent code which is not monomially equivalent (and thus also
not permutation equivalent) to an abelian code.

In what follows, we give other conditions for group codes (not
necessarily nilpotent) to be permutation equivalent to e Abelian
codes.



When a group G canbe written as a product G = AB, where A and
B are abelian subgroups of G then all ideals in a semisimple group
algebra FG are permutation equivalent to abelian codes ([1], [6]).

On the other hand, it was shown in [4], that there exists a
nilpotent code which is not monomially equivalent (and thus also
not permutation equivalent) to an abelian code.

In what follows, we give other conditions for group codes (not
necessarily nilpotent) to be permutation equivalent to e Abelian
codes.



Theorem

Let G be a finite group of order n, F a field and e ∈ FG an
idempotent. If there exists a subgroup H of G such that
char(F) |̸ |H| and eĤ = e, then FGe is permutation equivalent to
an abelian code.



Olteanu and Van Gelder, [4] considered the group algebra F2G with

G = ⟨a, b, c | a7 = 1, b3 = 1, c5 = 1, ba = a4b, [a, c] = 1, [b, c] = 1⟩,

which is metabelian, and exibited a best [105,3,60]-code in the
group algebra above.

They stated “it is unclear whether this code can be realized as an
Abelian code or not.”

The subgroup H = ⟨b, c , aba−2⟩ is non-normal, but if we denote by
e the idempotent generator for the given code, it can be shown
that eĤ = e. Hence, this code is equivalent to an Abelian code.
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Lemma

Let I be an ideal of the group algebra FG of dimension t. If I
contains a basis {ui}ti=1 whose elements have disjoint support, then
there exist elements g1, · · · , gt ∈ G such that {g1u1, · · · , gtu1} is
also a basis of I and its elements have disjoint support.

Theorem

Let G be a finite group of order n and let F be a finite field such
that char(F) |̸ |G |. Suppose that I ̸= (0) is a code in FG with a
basis whose elements have disjoint support. Then, I is monomially
equivalent to a cyclic code.
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Theorem

Let G be a finite nilpotent group. Let e ∈ FG be a primitive
central idempotent which is not essential. Then FGe is
permutation equivalent to an abelian code.

Corollary

If G is a finite nilpotent group which has a non-cyclic center, then
every minimal code in FG is permutation equivalent to an abelian
code.



Theorem

Let G be a finite nilpotent group. Let e ∈ FG be a primitive
central idempotent which is not essential. Then FGe is
permutation equivalent to an abelian code.

Corollary

If G is a finite nilpotent group which has a non-cyclic center, then
every minimal code in FG is permutation equivalent to an abelian
code.



Theorem

Let G be a finite nilpotent group of order n and e ∈ FG be a
primitive central idempotent such that G/Ke is of class c ≤ 2.
Then every code C ⊂ FG is permutation equivalent to a cyclic
code C ′ in FCn.
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